The K-nearest neighbors (K-NN) is an analogous approach. This method has its origin as a non-parametric statistical pattern recognition procedure to distinguish between different patterns according to a selection criterion. Through this method, researchers can generate future data. In other words, the KNN is a technique that conditionally resamples the values from the observed record based on the conditional relationship specied. The KNN is most simple approach.
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
Översikt
KNN-WG är en Shareware programvara i den kategorin Utbildning utvecklats av AgriMetSoft.
Den senaste versionen av KNN-WG är 1.0, släppt på 2017-08-02. Det lades ursprungligen till vår databas på 2017-08-02.
KNN-WG körs på följande operativsystem: Windows.
KNN-WG har inte blivit betygsatt av våra användare ännu.
Säkert och gratis nedladdningar kontrolleras av UpdateStar
Köp nu
AgriMetSoft
AgriMetSoft
Håll dig uppdaterad
med UpdateStar freeware.
med UpdateStar freeware.
Senaste recensionerna
![]() |
CyberLink YouCam
Förbättra dina videosamtal med CyberLink YouCam! |
![]() |
Nero Recode
Effektiv videokonvertering med Nero Recode |
![]() |
KeyCtrl
Öka din produktivitet med KeyCtrl! |
![]() |
MobieSync
Överför och hantera data utan ansträngning med MobieSync av Aiseesoft |
![]() |
MAGIX Video deluxe
Skapa proffsiga videor med lätthet med MAGIX Video deluxe! |
![]() |
ABS PDF Install
Hantera och installera PDF-filer utan ansträngning med ABS PDF Install. |
![]() |
UpdateStar Premium Edition
Att hålla din programvara uppdaterad har aldrig varit enklare med UpdateStar Premium Edition! |
![]() |
Microsoft Edge
En ny standard för webbsurfning |
![]() |
Microsoft Visual C++ 2015 Redistributable Package
Öka din systemprestanda med Microsoft Visual C++ 2015 Redistributable Package! |
![]() |
Google Chrome
Snabb och mångsidig webbläsare |
![]() |
Microsoft Visual C++ 2010 Redistributable
Viktig komponent för att köra Visual C++-applikationer |
![]() |
Microsoft OneDrive
Effektivisera din filhantering med Microsoft OneDrive |