The K-nearest neighbors (K-NN) is an analogous approach. This method has its origin as a non-parametric statistical pattern recognition procedure to distinguish between different patterns according to a selection criterion. Through this method, researchers can generate future data. In other words, the KNN is a technique that conditionally resamples the values from the observed record based on the conditional relationship specied. The KNN is most simple approach.
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
Resumen
KNN-WG es un software de Shareware en la categoría de Educación desarrollado por AgriMetSoft.
La última versión de KNN-WG es 1.0, aparecido en 02/08/2017. Inicialmente fue agregado a nuestra base de datos en 02/08/2017.
KNN-WG se ejecuta en los siguientes sistemas operativos: Windows.
KNN-WG no ha sido calificada por nuestros usuarios aún.
Descargas seguros y gratuitas controladas por UpdateStar
Compre ahora
AgriMetSoft
AgriMetSoft
Manténgase al día
con UpdateStar freeware.
con UpdateStar freeware.
Últimas reseñas
![]() |
World of Tanks
¡Sumérgete en épicas batallas de tanques con World of Tanks! |
![]() |
Kodi
Libera todo el potencial de tus medios con Kodi |
![]() |
GOM Media Player
GOM Media Player: Un reproductor multimedia versátil para todas sus necesidades |
![]() |
Canon G2000 series MP Drivers
Controladores de impresora eficientes para la serie Canon G2000 |
![]() |
Starus Partition Recovery
Recupere sus datos perdidos con Starus Partition Recovery |
IconChanger
Transforme su escritorio con IconChanger de Shell Labs |
![]() |
UpdateStar Premium Edition
¡Mantener su software actualizado nunca ha sido tan fácil con UpdateStar Premium Edition! |
![]() |
Microsoft Edge
Un nuevo estándar en la navegación web |
![]() |
Microsoft Visual C++ 2015 Redistributable Package
¡Aumente el rendimiento de su sistema con el paquete redistribuible de Microsoft Visual C++ 2015! |
![]() |
Google Chrome
Navegador web rápido y versátil |
![]() |
Microsoft Visual C++ 2010 Redistributable
Componente esencial para ejecutar aplicaciones de Visual C++ |
![]() |
Microsoft Update Health Tools
Herramientas de estado de Microsoft Update: ¡asegúrese de que su sistema esté siempre actualizado! |