The K-nearest neighbors (K-NN) is an analogous approach. This method has its origin as a non-parametric statistical pattern recognition procedure to distinguish between different patterns according to a selection criterion. Through this method, researchers can generate future data. In other words, the KNN is a technique that conditionally resamples the values from the observed record based on the conditional relationship specied. The KNN is most simple approach.
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
Przegląd
KNN-WG to Shareware oprogramowanie w kategorii Edukacja opracowane przez AgriMetSoft.
Najnowsza wersja KNN-WG jest 1.0, wydany na 02.08.2017. Początkowo był to dodane do naszej bazy na 02.08.2017.
KNN-WG jest uruchamiany w następujących systemach operacyjnych: Windows.
KNN-WG nie ma zostały ocenione przez naszych użytkowników jeszcze.
Darmowe bezpieczne pobieranie plików sprawdzonych przez UpdateStar
Kup teraz!
AgriMetSoft
AgriMetSoft
Bądź na bieżąco
z UpdateStar freeware.
z UpdateStar freeware.
Najnowsze recenzje
![]() |
KMPlayer
Potężny odtwarzacz multimedialny dla systemów Windows i Mac |
![]() |
Realtek High Definition Audio Driver
Niezbędny sterownik audio dla lepszej jakości dźwięku |
![]() |
Windows PC Health Check
Zadbaj o płynne działanie komputera dzięki funkcji Windows PC Health Check! |
![]() |
Canon MF6500 Series
Wydajne i niezawodne drukowanie dzięki serii Canon MF6500 |
![]() |
MyKeyFinder
Bez wysiłku odzyskaj utracone klucze licencyjne oprogramowania za pomocą MyKeyFinder |
![]() |
Mobile Broadband HL Service
Pozostań w kontakcie w podróży dzięki usłudze Mobile Broadband HL |
![]() |
UpdateStar Premium Edition
Aktualizowanie oprogramowania nigdy nie było łatwiejsze dzięki UpdateStar Premium Edition! |
![]() |
Microsoft Visual C++ 2015 Redistributable Package
Zwiększ wydajność swojego systemu dzięki pakietowi redystrybucyjnemu Microsoft Visual C++ 2015! |
![]() |
Microsoft Edge
Nowy standard przeglądania stron internetowych |
![]() |
Google Chrome
Szybka i wszechstronna przeglądarka internetowa |
![]() |
Microsoft Visual C++ 2010 Redistributable
Niezbędny składnik do uruchamiania aplikacji Visual C++ |
![]() |
Microsoft Update Health Tools
Microsoft Update Health Tools: Upewnij się, że Twój system jest zawsze aktualny! |