The K-nearest neighbors (K-NN) is an analogous approach. This method has its origin as a non-parametric statistical pattern recognition procedure to distinguish between different patterns according to a selection criterion. Through this method, researchers can generate future data. In other words, the KNN is a technique that conditionally resamples the values from the observed record based on the conditional relationship specied. The KNN is most simple approach.
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
Overzicht
KNN-WG is Shareware software in de categorie Onderwijs ontwikkeld door AgriMetSoft.
De nieuwste versie van KNN-WG is 1.0, uitgegeven op 02-08-2017. Het werd aanvankelijk toegevoegd aan onze database op 02-08-2017.
KNN-WG draait op de volgende operating systems: Windows.
KNN-WG niet is nog niet beoordeeld door onze gebruikers.
Veilige en gratis downloads, gecontroleerd door UpdateStar
Nu kopen
AgriMetSoft
AgriMetSoft
Blijf actueel
met UpdateStar freeware.
met UpdateStar freeware.
Recente beoordelingen
![]() |
GOM Media Player
GOM Media Player: een veelzijdige multimediaspeler voor al uw behoeften |
![]() |
Canon G2000 series MP Drivers
Efficiënte printerstuurprogramma's voor de Canon G2000-serie |
![]() |
WinSysClean X7 PRO
Verbeter de prestaties van uw pc met WinSysClean X7 PRO! |
![]() |
WinDirStat
WinDirStat: Efficiënt schijfruimtegebruik visualiseren en beheren |
![]() |
Nuance PDF Viewer SE
Nuance PDF Viewer SE: Vereenvoudig uw documentweergave-ervaring |
![]() |
PDFgear
Converteer en manipuleer PDF's moeiteloos met PDFgear. |
![]() |
UpdateStar Premium Edition
Uw software up-to-date houden is nog nooit zo eenvoudig geweest met UpdateStar Premium Edition! |
![]() |
Microsoft Edge
Een nieuwe standaard in surfen op het web |
![]() |
Microsoft Visual C++ 2015 Redistributable Package
Verbeter de prestaties van uw systeem met Microsoft Visual C++ 2015 Redistributable Package! |
![]() |
Google Chrome
Snelle en veelzijdige webbrowser |
![]() |
Microsoft Visual C++ 2010 Redistributable
Essentieel onderdeel voor het uitvoeren van Visual C++-toepassingen |
![]() |
Microsoft Update Health Tools
Microsoft Update Health Tools: zorg ervoor dat uw systeem altijd up-to-date is! |