The K-nearest neighbors (K-NN) is an analogous approach. This method has its origin as a non-parametric statistical pattern recognition procedure to distinguish between different patterns according to a selection criterion. Through this method, researchers can generate future data. In other words, the KNN is a technique that conditionally resamples the values from the observed record based on the conditional relationship specied. The KNN is most simple approach.
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
Обзор
KNN-WG — это Shareware программное обеспечение в категории Образование, разработанное AgriMetSoft.
Последняя версия KNN-WG-1.0, выпущенный на 02.08.2017. Первоначально он был добавлен в нашу базу данных на 02.08.2017.
KNN-WG работает на следующих операционных системах: Windows.
KNN-WG не был оценен нашими пользователями еще.
Последние обновления
Spotlight on Phonics 1.1.6
Review of Spotlight on Phonics OverviewBricks Spotlight on Phonics is a comprehensive three-level program tailored for elementary students encountering English for the first time.Hulk mod for Minecraft PE 1.1.2
Hulk mod for Minecraft PE is a fan-made creation tailored for enthusiasts of the Marvel universe. This modification allows players to embody a vigilant defender, safeguarding the populace from imminent threats.Random Letter Generator 1.7
Random Letter Generator offers a sleek and intuitive user interface that enables users to generate random letters according to a customizable alphabet. It serves as a supplementary tool for games or any other relevant purposes.SaniNet Viewer 2.1.01
A new bathroom project can often benefit from a fresh perspective. Look for inspiration from the 3D bathroom designs offered by SaniNet.Sherpa Driver 2.9.45
The Sherpa Driver app offers a valuable platform for individuals seeking flexible earning opportunities while engaging with their local communities.PoYo 6.9.2
PoYo is an engaging online live streaming platform that offers a variety of popular content, including live performances, artistic showcases, captivating dance routines, and amusing short videos.
Безопасные и бесплатных загрузок проверяются UpdateStar
Купить сейчас
AgriMetSoft
AgriMetSoft
Будьте актуальный
с UpdateStar бесплатно.
с UpdateStar бесплатно.
Последние новости
Последние обзоры
![]() |
IconPackager
Настраивайте значки на рабочем столе с легкостью! |
![]() |
Adobe Creative Suite Master Collection
Раскройте свой творческий потенциал с помощью Adobe Creative Suite Master Collection! |
novaPDF Lite
Преобразуйте свои документы без усилий с помощью novaPDF Lite |
|
![]() |
ACDSee Pro
ACDSee Pro: Идеальное программное обеспечение для редактирования и управления фотографиями |
SecuStar
SecuStar от Abelssoft: ваш идеальный компаньон для защиты данных |
|
![]() |
Stellar Repair for Outlook
Stellar Repair для Outlook: универсальное решение для восстановления электронной почты |
![]() |
UpdateStar Premium Edition
Обновлять программное обеспечение еще никогда не было так просто с UpdateStar Premium Edition! |
![]() |
Microsoft Visual C++ 2015 Redistributable Package
Повысьте производительность системы с помощью распространяемого пакета Microsoft Visual C++ 2015! |
![]() |
Microsoft Edge
Новый стандарт в просмотре веб-страниц |
![]() |
Google Chrome
Быстрый и универсальный веб-браузер |
![]() |
Microsoft Visual C++ 2010 Redistributable
Необходимый компонент для запуска приложений Visual C++ |
![]() |
Microsoft Update Health Tools
Средства обновления работоспособности Майкрософт: убедитесь, что ваша система всегда обновлена! |