The K-nearest neighbors (K-NN) is an analogous approach. This method has its origin as a non-parametric statistical pattern recognition procedure to distinguish between different patterns according to a selection criterion. Through this method, researchers can generate future data. In other words, the KNN is a technique that conditionally resamples the values from the observed record based on the conditional relationship specied. The KNN is most simple approach.
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
Vue d'ensemble
KNN-WG est un logiciel de Shareware dans la catégorie L'éducation développé par AgriMetSoft.
La dernière version de KNN-WG est 1.0, publié sur 02/08/2017. Au départ, il a été ajouté à notre base de données sur 02/08/2017.
KNN-WG s’exécute sur les systèmes d’exploitation suivants : Windows.
KNN-WG n'a pas encore été évalué par nos utilisateurs.
Dernières Mises à Jour
Secure téléchargements gratuits et vérifiés par UpdateStar
Acheter maintenant
AgriMetSoft
AgriMetSoft
Restez à jour
avec UpdateStar freeware.
avec UpdateStar freeware.
Dernières Nouvelles
Derniers avis
Impulse
Libérez votre créativité avec Impulse by Taparo ! |
|
Digital Image Recovery
Restaurer des souvenirs perdus avec la récupération d’images numériques |
|
Yahoo Message Archive Decoder
Déverrouillez votre passé avec le décodeur d’archives de messages Yahoo |
|
Wi-Fi WEP Key Generator
Sécurisez votre réseau en toute simplicité à l’aide du générateur de clés Wi-Fi WEP |
|
STOIK Cameraphone Enhancer
Transformez les photos de votre téléphone avec STOIK Cameraphone Enhancer |
|
Nevron .NET Vision
Renforcez vos applications .NET grâce à une visualisation de données époustouflante |
![]() |
UpdateStar Premium Edition
Garder votre logiciel à jour n’a jamais été aussi facile avec UpdateStar Premium Edition ! |
![]() |
Microsoft Visual C++ 2015 Redistributable Package
Améliorez les performances de votre système avec le package redistribuable Microsoft Visual C++ 2015 ! |
![]() |
Microsoft Edge
Un nouveau standard en matière de navigation sur le Web |
![]() |
Google Chrome
Navigateur Web rapide et polyvalent |
![]() |
Microsoft Visual C++ 2010 Redistributable
Composant essentiel pour l’exécution d’applications Visual C++ |
![]() |
Microsoft Update Health Tools
Outils Microsoft Update Health : assurez-vous que votre système est toujours à jour ! |