The K-nearest neighbors (K-NN) is an analogous approach. This method has its origin as a non-parametric statistical pattern recognition procedure to distinguish between different patterns according to a selection criterion. Through this method, researchers can generate future data. In other words, the KNN is a technique that conditionally resamples the values from the observed record based on the conditional relationship specied. The KNN is most simple approach.
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
概要
KNN-WG は、 AgriMetSoftによって開発されたカテゴリ 教育 の Shareware ソフトウェアです。
KNN-WG の最新バージョン 1.0 2017/08/02 にリリースです。 それは最初 2017/08/02 のデータベースに追加されました。
KNN-WG が次のオペレーティング システムで実行されます: Windows。
KNN-WG は私達のユーザーがまだ評価されていません。
最新のアップデート
最新ニュース
最新のレビュー
![]() |
Netflix
PokkiでNetflixの体験を向上させましょう! |
![]() |
MiPony
MiPony:ファイル管理を容易にする効率的なダウンロードマネージャー |
![]() |
Rocket League
『ロケットリーグ』:サッカーと車のスリリングな融合 |
![]() |
Aiseesoft iPhone Cleaner
Aiseesoft iPhoneクリーナーによる簡単なiPhoneの最適化 |
![]() |
7 Days to Die
ゾンビの黙示録を7日間で生き残りましょう! |
![]() |
Integrated camera
Sonixの内蔵カメラでビデオコミュニケーションに革命を起こす |
![]() |
UpdateStar Premium Edition
ソフトウェアを最新の状態に保つことは、UpdateStar Premium Edition でかつてないほど簡単になりました。 |
![]() |
Microsoft Visual C++ 2015 Redistributable Package
Microsoft Visual C++ 2015再頒布可能パッケージでシステムパフォーマンスを向上させましょう! |
![]() |
Microsoft Edge
Webブラウジングの新しい標準 |
![]() |
Google Chrome
高速で用途の広いWebブラウザ |
![]() |
Microsoft Visual C++ 2010 Redistributable
Visual C++ アプリケーションの実行に不可欠なコンポーネント |
![]() |
Microsoft Update Health Tools
Microsoft Update Health Tools:システムが常に最新であることを確認してください。 |