The K-nearest neighbors (K-NN) is an analogous approach. This method has its origin as a non-parametric statistical pattern recognition procedure to distinguish between different patterns according to a selection criterion. Through this method, researchers can generate future data. In other words, the KNN is a technique that conditionally resamples the values from the observed record based on the conditional relationship specied. The KNN is most simple approach.
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
– Áttekintés
KNN-WG Shareware szoftvere a kategória Oktatás fejlett mellett AgriMetSoft-ban.
A legutolsó változat-ból KNN-WG a(z) 1.0, 2017. 08. 02. megjelent. Kezdetben volt hozzá, hogy az adatbázisunkban a 2017. 08. 02..
a(z) KNN-WG a következő operációs rendszereken fut: Windows.
KNN-WG nem volt eddig a felhasználók még.
UpdateStar által ellenőrzött biztonságos és ingyenes letöltések
Vásárlás most
AgriMetSoft
AgriMetSoft
Legyen naprakész
az ingyenes UpdateStar-ral.
az ingyenes UpdateStar-ral.
Legutóbbi visszajelzések
![]() |
KMPlayer
Erőteljes multimédia lejátszó Windows és Mac rendszerekhez |
![]() |
Windows PC Health Check
Tartsa számítógépét zökkenőmentesen a Windows PC Health Check segítségével! |
![]() |
Canon MF6500 Series
Hatékony és megbízható nyomtatás a Canon MF6500 sorozattal |
![]() |
Mobile Broadband HL Service
Maradjon kapcsolatban útközben a mobil szélessávú HL szolgáltatással |
![]() |
SAMSUNG USB Driver for Mobile Phones
Hatékony csatlakoztatási megoldás Samsung mobiltelefonokhoz |
![]() |
Epic Games Launcher
Engedje szabadjára az Epic Games erejét az Epic Games Launcher segítségével |
![]() |
UpdateStar Premium Edition
A szoftver naprakészen tartása még soha nem volt ilyen egyszerű az UpdateStar Premium Edition segítségével! |
![]() |
Microsoft Visual C++ 2015 Redistributable Package
Növelje a rendszer teljesítményét a Microsoft Visual C++ 2015 Redistributable Package segítségével! |
![]() |
Microsoft Edge
Új szabvány a webböngészésben |
![]() |
Google Chrome
Gyors és sokoldalú webböngésző |
![]() |
Microsoft Visual C++ 2010 Redistributable
Alapvető összetevő Visual C++ alkalmazások futtatásához |
![]() |
Microsoft Update Health Tools
Microsoft Update Health Tools: Győződjön meg arról, hogy rendszere mindig naprakész! |