The K-nearest neighbors (K-NN) is an analogous approach. This method has its origin as a non-parametric statistical pattern recognition procedure to distinguish between different patterns according to a selection criterion. Through this method, researchers can generate future data. In other words, the KNN is a technique that conditionally resamples the values from the observed record based on the conditional relationship specied. The KNN is most simple approach.
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
The most promising non-parametric technique for generating weather data is the K-nearest neighbor (K-NN) resampling approach. The K-NN method is based on recognizing a similar pattern of target le within the historical observed weather data which could be used as reduction of the target year (Young, 1994; Yates, 2003; Eum et al., 2010). The target year is the initial seed of data which, together with the historical data, are required as
input les for running the model. This method relies on the assumption that the actual weather data observed during the target year could be a replication of weather recorded in the past. The k-NN technique does not use any predened mathematical functions to estimate a target variable.
Actually, the algorithm of this method typically involves selecting a specied number of days similar in characteristics to the day of interest. One of these days is randomly resampled to represent the weather of the next day in the simulation period. The nearest neighbor approach involves simultaneous sampling of the weather variables, such as precipitation and temperature. The sampling is carried out from the observed data, with replacement.
The K-NN method is widely used in agriculture (Bannayan and Hoogenboom, 2009), forestry (Lopez et al., 2001) and hydrology (Clark et al., 2004; Yates et al., 2003).
Visão geral
KNN-WG é um software Shareware na categoria Educação desenvolvido pela AgriMetSoft.
É a versão mais recente de KNN-WG 1.0, lançado em 02/08/2017. Inicialmente foi adicionado ao nosso banco de dados em 02/08/2017.
KNN-WG é executado nos seguintes sistemas operacionais: Windows.
KNN-WG não tem sido avaliado pelos nossos utilizadores ainda.
Downloads seguros e gratuitos verificados pelo UpdateStar
Comprar agora
AgriMetSoft
AgriMetSoft
Mantenha-se atualizado
com o UpdateStar gratuito.
com o UpdateStar gratuito.
Últimas revisões
![]() |
KMPlayer
Poderoso reprodutor multimídia para Windows e Mac |
![]() |
Windows PC Health Check
Mantenha seu PC funcionando sem problemas com o Windows PC Health Check! |
![]() |
Canon MF6500 Series
Impressão eficiente e confiável com a série Canon MF6500 |
![]() |
MyKeyFinder
Recupere sem esforço chaves de licença de software perdidas com o MyKeyFinder |
![]() |
Mobile Broadband HL Service
Mantenha-se conectado em qualquer lugar com o serviço HL de banda larga móvel |
![]() |
SAMSUNG USB Driver for Mobile Phones
Solução de conectividade eficiente para telefones celulares Samsung |
![]() |
UpdateStar Premium Edition
Manter seu software atualizado nunca foi tão fácil com o UpdateStar Premium Edition! |
![]() |
Microsoft Visual C++ 2015 Redistributable Package
Aumente o desempenho do seu sistema com o Microsoft Visual C++ 2015 Redistributable Package! |
![]() |
Microsoft Edge
Um novo padrão na navegação na Web |
![]() |
Google Chrome
Navegador da Web rápido e versátil |
![]() |
Microsoft Visual C++ 2010 Redistributable
Componente essencial para executar aplicativos do Visual C++ |
![]() |
Microsoft Update Health Tools
Ferramentas de integridade do Microsoft Update: Certifique-se de que seu sistema esteja sempre atualizado! |